$h = 8(t - 2) \sin 60^\circ$
$h = 8(t - 2)\left( \dfrac{\sqrt{3}}{2} \right)$
$h = 4\sqrt{3}(t - 2)$
$x = 8(t - 2) \cos 60^\circ$
$x = 8(t - 2)(1/2)$
$x = 4(t - 2)$
$b = 16 - x = 16 - 4(t - 2)$
$b = 16 - 4t + 8 = 24 - 4t$
$b = 4(6 - t)$
$\theta = \arctan \dfrac{h}{b} = \arctan \dfrac{4\sqrt{3}(t - 2)}{4(6 - t)}$
$\theta = \arctan \dfrac{\sqrt{3}(t - 2)}{6 - t}$
$\dfrac{d\theta}{dt} = \dfrac{\dfrac{(6 - t)\sqrt{3} - \sqrt{3}(t - 2)(-1)}{(6 - t)^2}}{1 + \left[ \dfrac{\sqrt{3}(t - 2)}{6 - t} \right]^2}$
$\dfrac{d\theta}{dt} = \dfrac{\dfrac{6\sqrt{3} - t\sqrt{3} + t\sqrt{3} - 2\sqrt{3}}{(6 - t)^2}}{1 + \dfrac{3(t - 2)^2}{(6 - t)^2}}$
$\dfrac{d\theta}{dt} = \dfrac{\dfrac{4\sqrt{3}}{(6 - t)^2}}{\dfrac{(6 - t)^2 + 3(t - 2)^2}{(6 - t)^2}}$
$\dfrac{d\theta}{dt} = \dfrac{4\sqrt{3}}{(6 - t)^2 + 3(t - 2)^2}$
(a) 3 hours after the start, t = 3
$\dfrac{d\theta}{dt} = \dfrac{4\sqrt{3}}{(6 - 3)^2 + 3(3 - 2)^2}$
$\dfrac{d\theta}{dt} = \dfrac{4\sqrt{3}}{9 + 3}$
$\dfrac{d\theta}{dt} = \dfrac{4\sqrt{3}}{12}$
$\dfrac{d\theta}{dt} = \frac{1}{3}\sqrt{3} \, \text{ rad/sec}$ answer
(b) Just after the turn, t = 2
$\dfrac{d\theta}{dt} = \dfrac{4\sqrt{3}}{(6 - 2)^2 + 3(2 - 2)^2}$
$\dfrac{d\theta}{dt} = \dfrac{4\sqrt{3}}{16 + 0}$
$\dfrac{d\theta}{dt} = \dfrac{4\sqrt{3}}{16}$
$\dfrac{d\theta}{dt} = \frac{1}{4}\sqrt{3} \, \text{ rad/sec}$ answer