Beam Stiffness (Let I = 60)
Formula: $K = \dfrac{I}{L}$
$K_{12} = \dfrac{60}{10} = 6$
$K_{23} = \dfrac{60}{10} = 6$
$K_{23} = \dfrac{60}{12} = 5$
Distribution Factors
Formula: $DF = \dfrac{K}{\Sigma K}$
$DF_{12} = 0$
$DF_{21} = \dfrac{6}{6 + 6} = 1/2$
$DF_{23} = \dfrac{6}{6 + 6} = 1/2$
$DF_{32} = \dfrac{6}{6 + 5} = 6/11$
$DF_{34} = \dfrac{5}{6 + 5} = 5/11$
$DF_{43} = 0$
Fixed End Moments
$\begin{align}
FEM_{12} & = -\dfrac{w_oL^2}{12} \\
& = -\dfrac{100(10^2)}{12} \\
& = -\dfrac{2500}{3} ~ \text{lb}\cdot\text{ft} \\
& = -833.33 ~ \text{lb}\cdot\text{ft}
\end{align}$
$\begin{align}
FEM_{21} & = \dfrac{2500}{3} ~ \text{lb}\cdot\text{ft} \\
& = 833.33 ~ \text{lb}\cdot\text{ft}
\end{align}$
$\begin{align}
FEM_{23} & = -\dfrac{5w_oL^2}{96} \\
& = -\dfrac{5(160)(10^2)}{96} \\
& = -\dfrac{2500}{3} ~ \text{lb}\cdot\text{ft} \\
& = -833.33 ~ \text{lb}\cdot\text{ft}
\end{align}$
$\begin{align}
FEM_{32} & = \dfrac{2500}{3} ~ \text{lb}\cdot\text{ft} \\
& = 833.33 ~ \text{lb}\cdot\text{ft}
\end{align}$
$\begin{align}
FEM_{34} & = -\sum \dfrac{Pab^2}{L^2} \\
& = -\dfrac{400(3)(9^2)}{12^2} - \dfrac{400(9)(3^2)}{12^2} \\
& = -900 ~ \text{lb}\cdot\text{ft}
\end{align}$
$FEM_{43} = 900 ~ \text{lb}\cdot\text{ft}$
Joint |
1 |
|
2 |
2 |
|
3 |
3 |
|
4 |
DF |
0 |
|
1/2 |
1/2 |
|
6/11 |
5/11 |
|
0 |
FEM |
-833.33 |
|
833.33 |
-833.33 |
|
833.33 |
-900 |
|
900 |
|
|
|
|
18.18 |
← |
36.36 |
30.30 |
→ |
15.15 |
|
-4.55 |
← |
-9.09 |
-9.09 |
→ |
-4.55 |
|
|
|
|
|
|
|
1.24 |
← |
2.48 |
2.07 |
→ |
1.03 |
|
-0.31 |
← |
-0.62 |
-0.62 |
→ |
-0.31 |
|
|
|
|
|
|
|
0.08 |
← |
0.17 |
0.14 |
→ |
0.07 |
|
-0.02 |
← |
-0.04 |
-0.04 |
→ |
-0.02 |
|
|
|
|
|
|
|
0.01 |
← |
0.01 |
0.01 |
→ |
0.00 |
|
0.00 |
← |
0.00 |
0.00 |
|
|
|
|
|
SUM |
-838.31 |
|
823.58 |
-823.58 |
|
867.48 |
-867.48 |
|
916.26 |
Answer:
M1 = -838.21 lb·ft
M2 = -823.58 lb·ft
M3 = -867.48 lb·ft
M4 = -916.26 lb·ft
Download the Microsoft Excel File
- Download the attached file below.