Beam Stiffness (Let I = 30)
Formula: $K = \dfrac{I}{L}$
$K_{AB} = 0$
$K_{BC} = \dfrac{30}{6} \times \dfrac{3}{4} = 3.75$
$K_{CD} = \dfrac{30}{10} = 3.0$
Distribution Factors
Formula: $DF = \dfrac{K}{\Sigma K}$
$DF_{BA} = 0$
$DF_{BC} = 1.0$
$DF_{CB} = \dfrac{3.75}{3.75 + 3.0} = 5/9$
$DF_{CD} = \dfrac{3.0}{3.75 + 3.0} = 4/9$
$DF_{DC} = 0$
Fixed End Moments
$\begin{align}
FEM_{BA} & = 50(4)(2) \\
& = 400 ~ \text{lb}\cdot\text{ft}
\end{align}$
$\begin{align}
FEM_{BC} & = -\dfrac{w_oL^2}{12} \\
& = -\dfrac{50(6^2)}{12} \\
& = -150 ~ \text{lb}\cdot\text{ft}
\end{align}$
$FEM_{CB} = 150 ~ \text{lb}\cdot\text{ft}$
$\begin{align}
FEM_{CD} & = -\dfrac{w_oL^2}{30} \\
& = -\dfrac{60(10^2)}{30} \\
& = -200 ~ \text{lb}\cdot\text{ft}
\end{align}$
$\begin{align}
FEM_{DC} & = \dfrac{w_oL^2}{20} \\
& = \dfrac{60(10^2)}{20} \\
& = 300 ~ \text{lb}\cdot\text{ft}
\end{align}$
Joint |
A |
B |
B |
|
C |
C |
|
D |
DF |
|
0 |
1.0 |
|
5/9 |
4/9 |
|
0 |
FEM |
|
400 |
-150 |
|
150 |
-200 |
|
300 |
|
|
0 |
-250 |
→ |
-125 |
|
|
|
|
|
|
|
|
97.22 |
77.78 |
→ |
38.89 |
SUM |
|
400 |
-400 |
|
122.22 |
-122.22 |
|
338.89 |
Answer:
MB = -400 lb·ft
MC = -122.22 lb·ft
MD = -338.89 lb·ft
Download the MS Excel File
- Dowload the attached file below