Problem 855 | Continuous Beams with Fixed Ends

Problem 855
If the distributed load in Prob. 854 is replaced by a concentrated load P at midspan, determine the moments over the supports.
 

855-i-span.gif

 

Answers:
$M_1 = \dfrac{PL}{8} \cdot \dfrac{1}{\alpha + 2} = M_4$

$M_2 = -\dfrac{PL}{8} \cdot \dfrac{2}{\alpha + 2} = M_3$
 

Problem 854 | Continuous Beams with Fixed Ends

Problem 854
Solve for the moment over the supports in the beam loaded as shown in Fig. P-854.
 

854-i-span.gif

 

Answers:
$M_1 = \dfrac{w_o L^2}{12} \cdot \dfrac{1}{\alpha + 2} = M_4$

$M_2 = -\dfrac{w_o L^2}{12} \cdot \dfrac{2}{\alpha + 2} = M_3$
 

Problem 853 | Continuous Beams with Fixed Ends

Problem 853
For the continuous beam shown in Fig. P-853, determine the moment over the supports. Also draw the shear diagram and compute the maximum positive bending moment. (Hint: Take advantage of symmetry.)
 

853-shear-diagram.gif

 

Problem 852 | Continuous Beams with Fixed Ends

Problem 852
Find the moments over the supports for the continuous beam in Figure P-852. Use the results of Problems 850 and 851.
 

852-fixed-ended-continuous-beam.gif

 

Answers
$M_1 = -146.43 ~ \text{N}\cdot\text{m}$

$M_2 = -307.14 ~ \text{N}\cdot\text{m}$

$M_3 = -521.43 ~ \text{N}\cdot\text{m}$