Length of Arc in XY-Plane | Applications of Integration
Apply Pythagorean theorem to the triangular strip shown in the figure:
$(ds)^2 = (dx)^2 + (dy)^2$ ← Equation (1)
Divide both sides of Equation (1) by (dx)2
$\dfrac{(ds)^2}{(dx)^2} = \dfrac{(dx)^2}{(dx)^2} + \dfrac{(dy)^2}{(dx)^2}$
$\left( \dfrac{ds}{dx} \right)^2 = 1 + \left( \dfrac{dy}{dx} \right)^2$
$\dfrac{ds}{dx} = \sqrt{1 + \left( \dfrac{dy}{dx} \right)^2}$
$ds = \sqrt{1 + \left( \dfrac{dy}{dx} \right)^2} \, dx$
Integrate both sides
Divide both sides of Equation (1) by (dy)2
$\dfrac{(ds)^2}{(dy)^2} = \dfrac{(dx)^2}{(dy)^2} + \dfrac{(dy)^2}{(dy)^2}$
$\left( \dfrac{ds}{dy} \right)^2 = \left( \dfrac{dx}{dy} \right)^2 + 1$
$\dfrac{ds}{dy} = \sqrt{\left( \dfrac{dx}{dy} \right)^2 + 1}$
$ds = \sqrt{\left( \dfrac{dx}{dy} \right)^2 + 1} ~ dy$
Integrate both sides