The curve traced by a point on the rim of the circle as the circle rolls along a straight line without skidding is called cycloid. There are many online resources you can read about cycloid. An interesting one includes the history of it which can be found
here.
Below is the animated .gif of cycloid from Wikipedia
The equation of the cycloid can be written easily if expressed in terms of parameter θ. θ is the angle rotated by the rolling circle.
From the figure, line OB = arc AB.
s=rθ
From right triangle ACO
a=rcosθ
b=rsinθ
Hence,
x=s−b=rθ−rsinθ
y=r−a=r−rcosθ
Thus,
x=r(θ−sinθ)
y=r(1−cosθ)
Differentiate x and y
dx=r(1−cosθ)dθ
dy=rsinθdθ
Length of one arc
s=∫x2x1√1+(dydx)2dx
Where,
dydx=rsinθdθr(1−cosθ)dθ
dydx=sinθ1−cosθ
Thus,
s=∫2π0√1+(sinθ1−cosθ)2r(1−cosθ)dθ
s=r∫2π0√1+sin2θ(1−cosθ)2(1−cosθ)dθ
s=r∫2π0√1+1−cos2θ(1−cosθ)2(1−cosθ)dθ
s=r∫2π0√1+(1−cosθ)(1+cosθ)(1−cosθ)2(1−cosθ)dθ
s=r∫2π0√1+1+cosθ1−cosθ(1−cosθ)dθ
s=r∫2π0√(1−cosθ)+(1+cosθ)1−cosθ(1−cosθ)dθ
s=r∫2π0√21−cosθ(1−cosθ)dθ
s=r√2∫2π01(1−cosθ)1/2(1−cosθ)dθ
s=r√2∫2π0(1−cosθ)1/2dθ
From
cos2x=1−2sin2x
2sin2x=1−cos2x
1−cos2x=2sin2x
Let x = ½ θ
1−cos2(12θ)=2sin2(12θ)
1−cosθ=2sin2(12θ)
(1−cosθ)1/2=√2sin(12θ)
Thus,
s=r√2∫2π0√2sin(12θ)dθ
s=2r∫2π0sin(12θ)dθ
s=4r∫2π0sin(12θ)(12dθ)
s=4r[−cos(12θ)]2π0
s=−4r[cos(12θ)]2π0
s=−4r(cosπ−cos0)
s=−4r(−1−1)
s=−4r(−2)
s=8r answer
Area under one arc of cycloid
A=∫x2x1ydx
A=∫2π0r(1−cosθ)×r(1−cosθ)dθ
A=r2∫2π0(1−cosθ)2dθ
A=r2∫2π0(1−2cosθ+cos2θ)dθ
A=r2∫2π0[1−2cosθ+12(1+cos2θ)]dθ
A=r2∫2π0(32−2cosθ+12cos2θ)dθ
A=r2[32θ−2sinθ+14sin2θ]2π0
A=r2[32(2π)−2sin(2π)+14sin2(2π)]−r2[0−2sin0+14sin0]
A=3πr2 answer