**Problem 432**

Use the method of sections to compute the force in members AB, AD, BC, and BD of the truss shown in Fig. P-432.

**Solution 432**

## Click here to show or hide the solution

$\Sigma M_F = 0$

$16R_A = 12(24) + 8(36)$

$R_A = 36 ~ \text{kN}$

$\Sigma M_D = 0$

$3F_{BC} + 8(36) = 4(24)$

$F_{BC} = -64 ~ \text{kN}$

$F_{BC} = 64 ~ \text{kN compression}$ *answer*

$\Sigma M_E = 0$

$8(\frac{3}{5}F_{BD}) + 8(24) = 12(36)$

$F_{BD} = 50 ~ \text{kN tension}$ *answer*

$\Sigma M_B = 0$

$3(\frac{4}{5}F_{AD}) + 4(\frac{3}{5}F_{AD}) = 4(36)$

$\frac{24}{5}F_{AD} = 144$

$F_{AD} = 30 ~ \text{kN tension}$ *answer*

$\Sigma F_V = 0$

$\frac{9}{\sqrt{97}}F_{AB} + \frac{3}{5}F_{AD} + 36 = 0$

$\frac{9}{\sqrt{97}}F_{AB} + \frac{3}{5}(30) + 36 = 0$

$F_{AB} = -59.09 ~ \text{kN}$

$F_{AB} = 59.09 ~ \text{kN compression}$ *answer*