$R_x = \Sigma F_x$
$R_x = 300 \sin 30^\circ - 224(\frac{2}{\sqrt{5}}) + 361(\frac{2}{\sqrt{13}})$
$R_x = 149.895 \, \text{ lb to the right}$
$R_y = \Sigma F_y$
$R_y = 300 \cos 30^\circ + 224(\frac{1}{\sqrt{5}}) - 361(\frac{3}{\sqrt{13}})$
$R_y = 59.613 \, \text{ lb upward}$
$R = \sqrt{{R_x}^2 + {R_y}^2}$
$R = \sqrt{149.895^2 + 59.613^2}$
$R = 161.314 \, \text{ lb}$
$\tan \theta_x = \dfrac{R_y}{R_x}$
$\tan \theta_x = \dfrac{59.613}{149.895}$
$\theta_x = 21.69^\circ$
$M_O = \Sigma M$
$M_O = -(300 \sin 30^\circ)(2) + 224(\frac{1}{\sqrt{5}})(2) + 361(\frac{2}{\sqrt{13}})(1)$
$M_O = 100.598 \, \text{ lb}\cdot\text{ft counterclockwise}$
$R_ya = M_O$
$59.613a = 100.598$
$a = 1.688 \, \text{ ft to the right of the origin}$
$R_xb = M_O$
$149.895b = 100.598$
$b = 0.671 \, \text{ ft below the origin}$
Thus, R = 161.314 lb upward to the right at θx = 21.69° and intercepts at (1.668, 0) and (0, -0.671).