
Volume of the cone:
$V = \frac{1}{3} \pi r^2 h$
From the figure:
$r^2 = a^2 - (h - a)^2$
$r^2 = a^2 - (h^2 - 2ah + a^2)$
$r^2 = 2ah - h^2$
$V = \frac{1}{3} \pi \, ( \, 2ah - h^2 \,) \, h$
$V = \frac{1}{3} \pi \, ( \, 2ah^2 - h^3 \,)$
The sphere is given, thus radius a is constant.
$\dfrac{dV}{dh} = \frac{1}{3} \pi \, ( \, 4ah - 3h^2 \,) = 0$
$4ah = 3h^2$
$h = \frac{4}{3} a$
Altitude of cone = 4/3 of radius of sphere answer