Volume of the cone:

$V = \frac{1}{3} \pi r^2 h$

From the figure:

$r^2 = a^2 - (h - a)^2$

$r^2 = a^2 - (h^2 - 2ah + a^2)$

$r^2 = 2ah - h^2$

$V = \frac{1}{3} \pi \, ( \, 2ah - h^2 \,) \, h$

$V = \frac{1}{3} \pi \, ( \, 2ah^2 - h^3 \,)$

The sphere is given, thus radius *a* is constant.

$\dfrac{dV}{dh} = \frac{1}{3} \pi \, ( \, 4ah - 3h^2 \,) = 0$

$4ah = 3h^2$

$h = \frac{4}{3} a$

Altitude of cone = 4/3 of radius of sphere *answer*