$a^2 + b^2 = c^2$
$b = \sqrt{c^2 - a^2}$
$A = \frac{1}{2}ab$
$A = \frac{1}{2}a\sqrt{c^2 - a^2}$
$\dfrac{dA}{da} = \dfrac{1}{2}\left( a \times \dfrac{-2a}{2\sqrt{c^2 - a^2}} + \sqrt{c^2 - a^2} \right) = 0$
$-\dfrac{a^2}{\sqrt{c^2 - a^2}} + \sqrt{c^2 - a^2} = 0$
$\sqrt{c^2 - a^2} = \dfrac{a^2}{\sqrt{c^2 - a^2}}$
$c^2 - a^2 = a^2$
$2a^2 = c^2$
$a^2 = \frac{1}{2}c^2$
$a = \frac{1}{\sqrt{2}}c$
$b = \sqrt{c^2 - \frac{1}{2}c^2}$
$b = \sqrt{\frac{1}{2}c^2}$
$b = \frac{1}{\sqrt{2}}c$
$A = \frac{1}{2}ab$
$A_{max} = \frac{1}{2}\left( \frac{1}{\sqrt{2}}c \right) \left( \frac{1}{\sqrt{2}}c \right)$
$A_{max} = \frac{1}{4}c^2$ answer