$x = 20 \tan \theta$
$s = 20 \sec \theta$
$\text{Time}_{\text{boat}} = \text{Time}_{\text{bus}} + \frac{18}{60}$
Note: time = distance / rate
Let r = rate of boat
Thus,
$\dfrac{s}{r} = \dfrac{x}{50} + \dfrac{18}{60}$
$\dfrac{20 \sec \theta}{r} = \dfrac{20 \tan \theta}{50} + \dfrac{3}{10}$
$1000 \sec \theta = 20r \tan \theta + 15r$
$200 \sec \theta = (4 \tan \theta + 3)r$
$r = \dfrac{200 \sec \theta}{4 \tan \theta + 3}$
$\dfrac{dr}{d\theta} = \dfrac{(4 \tan \theta + 3)(200 \sec \theta \, \tan \theta) - 200 \sec \theta (4 \sec^2 \theta)}{(4 \tan \theta + 3)^2} = 0$
$\dfrac{200 \sec \theta \, \tan \theta\,(4 \tan \theta + 3) - 800 \sec^3 \theta}{(4 \tan \theta + 3)^2} = 0$
$200 \sec \theta \, \tan \theta\,(4 \tan \theta + 3) - 800 \sec^3 \theta = 0$
$\tan \theta\,(4 \tan \theta + 3) - 4 \sec^2 \theta = 0$
$4 \tan^2 \theta + 3\tan \theta - 4 (1 + \tan^2 \theta) = 0$
$4 \tan^2 \theta + 3\tan \theta - 4 - 4\tan^2 \theta = 0$
$3\tan \theta - 4 = 0$
$\tan \theta = 4/3$
$r = \dfrac{200 \sec \theta}{4 \tan \theta + 3}$
$r = \dfrac{200 (5/3)}{4(4/3) + 3}$
$r = 40 \, \text{ miles per hour}$ answer