ΣFH=0
FH=2000cos15∘ lb
ΣME=0
6FV=14(2000cos15∘)+2(2000sin15∘)
FV=2503cos15∘+20003sin15∘ lb
FV=2503(cos15∘+8sin15∘) lb
At section through C
MC=ΣMto the right of C
MC=3FV
MC=250(cos15∘+8sin15∘) lb⋅ft
σa=PA=2000cos15∘2(6)
σa=160.99 psi
σf=6Mbd2=6[250(cos15∘+8sin15∘)](12)2(62)
σf=759.11 psi
σA=−σa−σf=−160.99−759.11
σA=−920.10 psi answer
σB=−σa+σf=−160.99+759.11
σB=598.12 psi answer
At section through D
By inspection, the maximum moment is at D, hence, the maximum normal stress will occur at the extreme fibers of section through D.
MD=ΣMto the right of D
MD=4FV
MD=10003(cos15∘+8sin15∘) lb⋅ft
σa=PA=2000cos15∘2(6)
σa=160.99 psi
σf=6Mbd2=6[10003(cos15∘+8sin15∘)](12)2(62)
σf=1012.16 psi
σtop=−σa−σf=−160.99−1012.16
σtop=−1173.15 psi answer
σbottom=−σa+σf=−160.99+1012.16
σbottom=851.17 psi answer