ΣMR1=0
aR3=wob(a+12b)
R3=woba(2a+b2)
R3=wob2a(2a+b)
ΣMR3=0
aR1=wob(12b)
R1=wob22a
M1=M4=0
M2=−R1(12a)=−wob22a(12a)=−wob24
M3=−wob(12b)=−12wob2
For span 1-3-4
L1=a → span 1 to 3
L2=b → span 3 to 4
M1L1+2M3(L1+L2)+M4L2+6A1ˉa1L1+6A2ˉb2L2=6EI(h1L1+h4L2)
0+2(−12wob2)(a+b)+0+0+14wob3=6EI(0+h4b)
−woab2−wob3+14wob3=6EIbh4
−woab2−34wob3=6EIbh4
6EIbh4=−14wob2(4a+3b)
h4=−wob36EI(4a+3b)
The negative sign of h4 indicates that point 4 is below point 3, thus,
δ4=wob36EI(4a+3b) downward answer
For span 1-2-3
L1=12a → span 1 to 2
L2=12a → span 2 to 3
h1=h3=h
M1L1+2M2(L1+L2)+M3L2+6A1ˉa1L1+6A2ˉb2L2=6EI(h1L1+h3L2)
0+2(−14wob2)(12a)+12a)−12wob2(12a)+0+0=6EI(h12a+h12a)
−12woab2−14woab2=6EI(4ha)
−34woab2=24EIah
h=−woa2b232EI
The negative sign of h indicates that points 1 and 3 are below point 2, thus,
δ2=woa2b232EI upward answer