$\Sigma M_{D} = 0$
$8R_1 = 200(5) + 400(1)$
$R_1 = 175 \, \text{ lb}$
$\Sigma M_{A} = 0$
$8R_2 = 200(3) + 400(7)$
$R_2 = 425 \, \text{ lb}$
By ratio and proportion
$\dfrac{y_C}{1} = \dfrac{2125}{5}$
$y_C = 425 \, \text{ lb}\cdot\text{ft}$
From the conjugate beam
$\Sigma M_D = 0$
$8F_1 + \frac{1}{2}(4)(1600)[1 + \frac{2}{3}(4)] = \frac{1}{2}(3)(525)[5 + \frac{1}{3}(3)] + \frac{1}{2}(5)(2125)[\frac{2}{3}(5)]$
$F_1 = 1337.5 \, \text{ lb}\cdot\text{ft}^2$
$\Sigma M_A = 0$
$8F_2 + \frac{1}{2}(4)(1600)[3 + \frac{1}{3}(4)] = \frac{1}{2}(3)(525)[\frac{2}{3}(3)] + \frac{1}{2}(5)(2125)[3 + \frac{1}{3}(5)]$
$F_2 = 1562.5 \, \text{ lb}\cdot\text{ft}^2$
Consider the section to the left of B in conjugate beam
$M_B = \frac{1}{2}(3)(525)[\frac{1}{3}(3)] - 3F_1$
$MB = 787.5 - 3(1337.5)$
$M_B = -3225 \, \text{ lb}\cdot\text{ft}^3$
Thus, the deflection at B is
$EI ~ \delta_B = M_B$
$EI ~ \delta_B = 3225 \, \text{ lb}\cdot\text{ft}^3$ answer
Consider the section to the right of C in conjugate beam
$M_C = \frac{1}{2}(1)(y_C)[\frac{1}{3}(1)] - 1F_2$
$M_C = \frac{1}{2}(1)(425)[\frac{1}{3}(1)] - 1(1562.5)$
$M_C = -1491.67 \, \text{ lb}\cdot\text{ft}^3$
Thus, the deflection at C is
$EI ~ \delta_C = M_C$
$EI ~ \delta_C = -1491.67 \, \text{ lb}\cdot\text{ft}^3$
$EI ~ \delta_C = 1491.67 \, \text{ lb}\cdot\text{ft}^3$ downward answer
dito po sa part ng solution
dito po sa part ng solution
ΣMA=0
8F2+(1/2)(4)(1600)[(1/3)(4)]=(1/2)(3)(525)[(2/3)(3)]+(1/2)(5)(2125)[3+(1/3)(5)]
F2=1562.5 lb⋅ft2
hindi po ba
ΣMA=0
8F2+(1/2)(4)(1600)[3+(1/3)(4)]=(1/2)(3)(525)[(2/3)(3)]+(1/2)(5)(2125)[3+(1/3)(5)]
F2=1566.25 lb⋅ft2
You are correct. Update has
In reply to dito po sa part ng solution by Mark123 (not verified)
You are correct, fortunately, the answer for F2 is correct. Update has been made for the moment arm. Thank you.