By symmetry,
$R_1 = R_2 = 2(600)$
$R_1 = R_2 = 1200 \, \text{ N}$
The loads of conjugate beam are symmetrical, thus,
$F_1 = F_2 = \frac{1}{2} [ \, \frac{1}{2}(5)(3000) + \frac{1}{3}(1)(75) - \frac{1}{3}(5)(1875) \, ]$
$F_1 = F_2 = 2200 \, \text{ N}\cdot\text{m}^2$
For this beam, the maximum deflection will occur at the midspan.
$M_{midspan} = \frac{1}{2}(2.5)(3000)[ \frac{1}{3}(2.5) ] + \frac{1}{3}(0.5)(75)[ \frac{1}{4}(0.5) ] - \frac{1}{3}(2.5)(1875)[ \frac{1}{4}(2.5) ] - 2200(2.5)$
$M_{midspan} = -3350 \, \text{ N}\cdot\text{m}^3$
Therefore, the maximum deflection is
$EI~\delta_{max} = M_{midspan}$
$EI~\delta_{max} = -3350 \, \text{ N}\cdot\text{m}^3$
$EI~\delta_{max} = 3350 \, \text{ N}\cdot\text{m}^3$ below the neutral axis answer