# midspan deflection

## Problem 730 | Uniform loads at each end of fully restrained beam

**Problem 703**

Determine the end moment and maximum deflection for a perfectly restrained beam loaded as shown in Fig. P-730.

## Problem 729 | Uniform load over the center part of fixed-ended beam

**Problem 729**

For the restrained beam shown in Fig. P-729, compute the end moment and maximum EIδ.

## Problem 728 | Isosceles triangular load over the entire span of fully restrained beam

**Problem 728**

Determine the end moment and maximum deflection of a perfectly restrained beam loaded as shown in Fig. P-728.

## Problem 727 | Fully restrained beam with uniform load over the entire span

**Problem 727**

Repeat Problem 726 assuming that the concentrated load is replaced by a uniformly distributed load of intensity w_{o} over the entire length.

## Problem 726 | Fully restrained beam with concentrated load at midspan

**Problem 726**

A beam of length L, perfectly restrained at both ends, supports a concentrated load P at midspan. Determine the end moment and maximum deflection.

## Problem 715 | Distributed loads placed symmetrically over fully restrained beam

**Problem 12**

Determine the moment and maximum EIδ for the restrained beam shown in Fig. RB-012. (Hint: Let the redundants be the shear and moment at the midspan. Also note that the midspan shear is zero.)

## Problem 713 | Fully restrained beam with symmetrically placed concentrated loads

**Problem 713**

Determine the end moment and midspan value of EIδ for the restrained beam shown in Fig. PB-010. (Hint: Because of symmetry, the end shears are equal and the slope is zero at midspan. Let the redundant be the moment at midspan.)

## Problem 710 | Two simple beams at 90 degree to each other

**Problem 710**

Two timber beams are mounted at right angles and in contact with each other at their midpoints. The upper beam A is 2 in wide by 4 in deep and simply supported on an 8-ft span; the lower beam B is 3 in wide by 8 in deep and simply supported on a 10-ft span. At their cross-over point, they jointly support a load P = 2000 lb. Determine the contact force between the beams.