Example 01: Maximum bending stress, shear stress, and deflection

Problem
A timber beam 4 m long is simply supported at both ends. It carries a uniform load of 10 kN/m including its own weight. The wooden section has a width of 200 mm and a depth of 260 mm and is made up of 80% grade Apitong. Use dressed dimension by reducing its dimensions by 10 mm.

Properties of Apitong
Bending and tension parallel to grain = 16.5 MPa
Shear parallel to grain = 1.73 MPa
Modulus of elasticity in bending = 7.31 GPa
  1. What is the maximum flexural stress of the beam?
  2. What is the maximum shearing stress of the beam?
  3. What is the maximum deflection of the beam?

 

2006-may-ce-board-stresses-in-timber-beam.gif

 

Midspan Deflection | Deflections in Simply Supported Beams

In simply supported beams, the tangent drawn to the elastic curve at the point of maximum deflection is horizontal and parallel to the unloaded beam. It simply means that the deviation from unsettling supports to the horizontal tangent is equal to the maximum deflection. If the simple beam is symmetrically loaded, the maximum deflection will occur at the midspan.