maximum deflection

Solution to Problem 665 | Deflections in Simply Supported Beams

Problem 665
Replace the concentrated load in Prob. 664 by a uniformly distributed load of intensity wo acting over the middle half of the beam. Find the maximum deflection.
 

Solution to Problem 664 | Deflections in Simply Supported Beams

Problem 664
The middle half of the beam shown in Fig. P-664 has a moment of inertia 1.5 times that of the rest of the beam. Find the midspan deflection. (Hint: Convert the M diagram into an M/EI diagram.)
 

Simple beam with different moment of inertia over the span

 

Solution to Problem 663 | Deflections in Simply Supported Beams

Problem 663
Determine the maximum deflection of the beam carrying a uniformly distributed load over the middle portion, as shown in Fig. P-663. Check your answer by letting 2b = L.
 

Uniform Load Over Middle Part of Simple Beam

 

Solution to Problem 662 | Deflections in Simply Supported Beams

Problem 662
Determine the maximum deflection of the beam shown in Fig. P-662. Check your result by letting a = L/2 and comparing with case 8 in Table 6-2. Also, use your result to check the answer to Prob. 653.
 

Simple beam with symmetrically placed uniform load

 

Solution to Problem 661 | Deflections in Simply Supported Beams

Problem 661
Compute the midspan deflection of the symmetrically loaded beam shown in Fig. P-661. Check your answer by letting a = L/2 and comparing with the answer to Problem 609.
 

Symmetrically Placed Point Loads over a Simple Beam

 

Solution to Problem 660 | Deflections in Simply Supported Beams

Problem 660
A simply supported beam is loaded by a couple M at its right end, as shown in Fig. P-660. Show that the maximum deflection occurs at x = 0.577L.
 

Moment load at hinged end of simple beam

 

Solution to Problem 659 | Deflections in Simply Supported Beams

Problem 659
A simple beam supports a concentrated load placed anywhere on the span, as shown in Fig. P-659. Measuring x from A, show that the maximum deflection occurs at x = √[(L2 - b2)/3].
 

Simple Beam with Load P at any Point

 

Solution to Problem 653 | Deflections in Simply Supported Beams

Problem 653
Compute the midspan value of EIδ for the beam shown in Fig. P-653. (Hint: Draw the M diagram by parts, starting from midspan toward the ends. Also take advantage of symmetry to note that the tangent drawn to the elastic curve at midspan is horizontal.)
 

Simple beam with symmetrically placed rectangular load

 

Solution to Problem 647 | Deflection of Cantilever Beams

Problem 647
Find the maximum value of EIδ for the beam shown in Fig. P-647.
 

Triangle load over half end of cantilever beam

 

Solution to Problem 644 | Deflection of Cantilever Beams

Problem 644
Determine the maximum deflection for the beam loaded as shown in Fig. P-644.
 

Uniform load over half end of cantilever beam

 

Pages

 
 
Subscribe to RSS - maximum deflection