The most critical section in bending is at the fixed support
Mmax=woL28=28.8(82)8
Mmax=230.4 kN⋅m
For Balanced Capacity
fc=0.45f′c=0.45(21)=9.45 MPa
fs=140 MPa
xbalfc=dfc+fs/n
xbal9.45=5409.45+140/9
xbal=204 mm
Cbal=12fcbxbal=12(9.45)(400)(204)
Cbal=385.56 kN
Mbal=Cbal(d−13xbal)=385.56[0.540−13(0.204)]
Mbal=181.98 kN⋅m
Mmax > Mbal, thus, the beam is doubly-reinforced
For Doubly-Reinforced Beam Section
Solve for As1 from Balanced Condition
Mbal=Tbal(d−13xbal)
Mbal=fsAs1(d−13xbal)
181.98(10002)=140As1[540−13(204)]
As1=2753.93 mm2
Solve As2 from the excess of Mmax and Mbal
Mexcess=Mmax−Mbal=230.4−181.98
Mexcess=48.42 kN⋅m
Mexcess=T2(d−d′)
Mexcess=fsAs2(d−d′)
48.42(10002)=140As2(540−60)
As2=720.54 mm2
Total steel area in tension
As=As1+As2=2753.93+720.54
As=3474.47 mm2
Number of 32-mm tension bars
N=AsAb=3474.4714π(282)
N=4.32
Use 5 - 32 mm ø bars answer
Solve As' from the balanced condition using Mexcess
(Note: if fs' > fs, use fs' = fs)
f′s/2nxbal−d′=fcxbal
f′s=2nfc(xbal−d′)xbal
f′s=2(9)(9.45)(204−60)204
f′s=120.07 MPa
You may also use the tension steel in the proportion:
fs' < (fs = 140 MPa), use fs' = 120.07 MPa
Mexcess=T′2(d−d′)
Mexcess=A′s(2n−1)(f′s/2n)(d−d′)
48.42(10002)=A′s[2(9)−1][120.07/(2×9)](540−60)
A′s=889.55 mm2
Number of 32-mm compression bars
N=A′sAb=889.5514π(322)
N=1.1
Use 2 - 32 mm ø bars answer