$R = 2(1000) + 3(2000)$
$R = 8000 \, \text{ lb}$
$R_x = R \sin 30^\circ$
$R_x = 8000 \sin 30^\circ$
$R_x = 4000 \, \text{ lb}$
$R_y = R \cos 30^\circ$
$R_y = 8000 \cos 30^\circ$
$R_y = 6928.20 \, \text{ lb}$
$\Sigma M_B = 0$
$60R_A = 40R_y$
$60R_A = 40(6928.20)$
$R_A = 4618.80 \, \text{ lb}$ answer
$\Sigma M_A = 0$
$60B_V = 20R_y$
$60B_V = 20(6958.20)$
$B_V = 2309.40 \, \text{ lb}$
$\Sigma F_H = 0$
$B_H = R_x$
$B_H = 4000 \, \text{ lb}$
$R_B = \sqrt{{B_H}^2 + {B_V}^2}$
$R_B = \sqrt{4000^2 + 2309.40^2}$
$R_B = 4618.80 \, \text{ lb}$
$\tan \theta_{Bx} = \dfrac{B_V}{B_H}$
$\tan \theta_{Bx} = \dfrac{2309.40}{4000}$
$\theta_{Bx} = 30^\circ$
Thus,
RB = 4618.80 lb at 30° with horizontal answer