$\Sigma F_H = 0$
$F(\frac{3}{5}) = P(\frac{1}{\sqrt{5}}) + 30$
$F = \frac{\sqrt{5}}{3}P + 50$ → Equation (1)
$\Sigma F_V = 0$
$P(\frac{2}{\sqrt{5}}) + F(\frac{4}{5}) = 18$
$\frac{\sqrt{5}}{2}P + F = 22.5$
Substitute F of Equation (1)
$\frac{\sqrt{5}}{2}P + (\frac{\sqrt{5}}{3}P + 50) = 22.5$
$\frac{5\sqrt{5}}{6}P = -27.5$
$P = -14.76 \, \text{ kN}$ answer
From Equation (1)
$F = \frac{\sqrt{5}}{3}(-14.76) + 50$
$F = 39 \, \text{ kN}$ answer