$\Sigma F_H = 0$
$F(\frac{5}{\sqrt{41}}) = P(\frac{2}{\sqrt{13}})$
$F = 0.7104P$
$\Sigma F_V = 0$
$P(\frac{3}{\sqrt{13}}) = F(\frac{4}{\sqrt{41}}) + 35$
$P(\frac{3}{\sqrt{13}}) = (0.7104P)(\frac{4}{\sqrt{41}}) + 35$
$0.3883P = 35$
$P = 90.14 \, \text{ kN}$ answer
$F = 0.7104(90.14)$
$F = 64.03 \, \text{ kN}$ answer