Just in case you need to see the whole picture
$P_1 = B_H \cos \theta = 40 \left( \dfrac{2}{\sqrt{5}} \right) = 16\sqrt{5} ~ \text{kN}$
$P_2 = B_V \sin \theta = 10 \left( \dfrac{1}{\sqrt{5}} \right) = 2\sqrt{5} ~ \text{kN}$
$P_3 = 60 \sin \theta = 60 \left( \dfrac{1}{\sqrt{5}} \right) = 12\sqrt{5} ~ \text{kN}$
$P_4 = E_H \cos \theta = 40 \left( \dfrac{2}{\sqrt{5}} \right) = 16\sqrt{5} ~ \text{kN}$
$P_5 = E_V \sin \theta = 50 \left( \dfrac{1}{\sqrt{5}} \right) = 10\sqrt{5} ~ \text{kN}$
$P_1 - P_2 = 14\sqrt{5} ~ \text{kN}$
$P_4 + P_5 = 26\sqrt{5} ~ \text{kN}$
$V_1 = B_H \sin \theta = 40 \left( \dfrac{1}{\sqrt{5}} \right) = 8\sqrt{5} ~ \text{kN}$
$V_2 = B_V \cos \theta = 10 \left( \dfrac{2}{\sqrt{5}} \right) = 4\sqrt{5} ~ \text{kN}$
$V_3 = 60 \cos \theta = 60 \left( \dfrac{2}{\sqrt{5}} \right) = 24\sqrt{5} ~ \text{kN}$
$V_4 = E_H \sin \theta = 40 \left( \dfrac{1}{\sqrt{5}} \right) = 8\sqrt{5} ~ \text{kN}$
$V_5 = E_V \cos \theta = 50 \left( \dfrac{2}{\sqrt{5}} \right) = 20\sqrt{5} ~ \text{kN}$
$V_1 + V_2 = 12\sqrt{5} ~ \text{kN}$
$V_5 - V_4 = 12\sqrt{5} ~ \text{kN}$