Maximum Moment
$M_{max} = 29.05(4)(2) = 232.4 ~ \text{kN}\cdot\text{m}$
For Balanced Capacity
$f_c = 0.45f_c' = 0.45(21) = 9.45 ~ \text{MPa}$
$f_s = 165 ~ \text{MPa}$
$\dfrac{x_{bal}}{f_c} = \dfrac{d}{f_c + f_s/n}$
$\dfrac{x_{bal}}{9.45} = \dfrac{685}{9.45 + 165/9}$
$x_{bal} = 233 ~ \text{mm}$
$C_{bal} = \frac{1}{2}f_c \, b x_{bal} = \frac{1}{2}(9.45)(400)(233)$
$C_{bal} = 440.37 ~ \text{kN}$
$M_{bal} = C_{bal}(d - \frac{1}{3}x_{bal}) = 440.37[ \, 0.685 – \frac{1}{3}(0.233) \, ]$
$M_{bal} = 267.45 ~ \text{kN}\cdot\text{m}$
Mmax < Mbal, thus, the beam is singly-reinforced.
For Singly Reinforced Section
$f_s = 165 ~ \text{MPa}$
$f_c = ~ ?$
Accurate Solution for finding As (Not recommended)
Approximate Solution for finding As (Recommended)
$M_{max} = T(d - \frac{1}{3}x_{bal})$
$M_{max} = A_sf_s(d - \frac{1}{3}x_{bal})$
$A_s = \dfrac{M_{max}}{f_s(d - \frac{1}{3}x_{bal})}$
$A_s = \dfrac{232.4(1000^2)}{165[ \, 685 - \frac{1}{3}(233) \, ]}$
$A_s = 2319.13 ~ \text{mm}^2$
Number of bars
$N = \dfrac{A_s}{A_b} = \dfrac{2319.13}{\frac{1}{4}\pi (28^2)}$
$N = 3.76$
Use 4 - 28 mm ø bars answer