Discharge
$Q_2 = Q_3 = Q_4 = Q$
Head lost
$HL_{1-2} = 1.1 \, \text{ ft}$
$HL_{2-3} = 0.7 \, \text{ ft}$
$HL_{3-4} = 2.5 \, \text{ ft}$
Velocity heads in terms of Q
$\dfrac{v^2}{2g} = \dfrac{8Q^2}{\pi^2gD^4}$
$\dfrac{{v_2}^2}{2g} = \dfrac{8Q^2}{\pi^2(32.2)(3/12)^4} = 6.4443Q^2$
$\dfrac{{v_3}^2}{2g} = \dfrac{{v_4}^2}{2g} = \dfrac{8Q^2}{\pi^2(32.2)(4/12)^4} = 2.039Q^2$
Energy equation between 1 and 4
$E_1 - HL_{1-2} - HL_{2-3} - HL_{3-4} = E_4$
$\left( \dfrac{{v_1}^2}{2g} + \dfrac{p_1}{\gamma} + z_1 \right) - HL_{1-2} - HL_{2-3} - HL_{3-4} = \left( \dfrac{{v_4}^2}{2g} + \dfrac{p_4}{\gamma} + z_4 \right)$
$(0 + 0 + 10) - 1.1 - 0.7 - 2.5 = (2.039Q^2 + 0 + 0)$
$2.039Q^2 = 5.7$
$Q = 1.672 \, \text{ ft}^3\text{/s}$ answer
Velocity heads at 2, 3, and 4
$\dfrac{{v_2}^2}{2g} = 6.4443(1.672^2) = 18.02 \, \text{ ft}$
$\dfrac{{v_3}^2}{2g} = \dfrac{{v_4}^2}{2g} = 2.039(1.672^2) = 5.7 \, \text{ ft}$
Energy equation between 1 and 2
$E_1 - HL_{1-2} = E_2$
$\left( \dfrac{{v_1}^2}{2g} + \dfrac{p_1}{\gamma} + z_1 \right) - HL_{1-2} = \left( \dfrac{{v_2}^2}{2g} + \dfrac{p_2}{\gamma} + z_2 \right)$
$(0 + 0 + 10) - 1.1 = \left( 18.02 + \dfrac{p_2}{\gamma} + 15 \right)$
$\dfrac{p_2}{\gamma} = -24.12 \, \text{ ft}$
$p_2 = -24.12\gamma = -24.12(0.9 \times 62.4)$
$p_2 = -1354.58 \, \text{ psf}$
$p_2 = -1354.58 \dfrac{\text{lb}}{\text{ft}^2} \times \left( \dfrac{1 \text{ft}}{12 \text{in}} \right)^2$
$p_2 = -9.41 \, \text{ psi}$ answer
Energy equation between 3 and 4
$E_3 - HL_{3-4} = E_4$
$\left( \dfrac{{v_3}^2}{2g} + \dfrac{p_3}{\gamma} + z_3 \right) - HL_{3-4} = \left( \dfrac{{v_4}^2}{2g} + \dfrac{p_4}{\gamma} + z_4 \right)$
$\left( 5.7 + \dfrac{p_3}{\gamma} + 15 \right) - 2.5 = (5.7 + 0 + 0)$
$\dfrac{p_3}{\gamma} = -12.5 \, \text{ ft}$
$p_3 = -12.5\gamma = -12.5(0.9 \times 62.4)$
$p_3 = -702 \, \text{ psf}$
$p_3 = -702 \dfrac{\text{lb}}{\text{ft}^2} \times \left( \dfrac{1 \text{ft}}{12 \text{in}} \right)^2$
$p_3 = -4.875 \, \text{ psi}$ answer
Checking
Energy equation between 2 and 3
$E_2 - HL_{2-3} = E_3$
$\left( \dfrac{{v_2}^2}{2g} + \dfrac{p_2}{\gamma} + z_2 \right) - HL_{2-3} = \left( \dfrac{{v_3}^2}{2g} + \dfrac{p_3}{\gamma} + z_3 \right)$
$(18.02 - 24.12 + 15) - 0.7 = (5.7 - 12.5 + 15)$
$8.2 = 8.2$ (check!)
Tabulated result
Point |
Elevation head (ft) |
Velocity head (ft) |
Pressure head (ft) |
Total head (ft) |
1 |
10 |
0 |
0 |
10 |
2 |
15 |
18.02 |
-24.12 |
8.9 |
3 |
15 |
5.7 |
-12.5 |
8.2 |
4 |
0 |
5.7 |
0 |
5.7 |