Discharge
Q2=Q3=Q4=Q
Head lost
HL1−2=1.1 ft
HL2−3=0.7 ft
HL3−4=2.5 ft
Velocity heads in terms of Q
v22g=8Q2π2gD4
v222g=8Q2π2(32.2)(3/12)4=6.4443Q2
v322g=v422g=8Q2π2(32.2)(4/12)4=2.039Q2
Energy equation between 1 and 4
E1−HL1−2−HL2−3−HL3−4=E4
(v122g+p1γ+z1)−HL1−2−HL2−3−HL3−4=(v422g+p4γ+z4)
(0+0+10)−1.1−0.7−2.5=(2.039Q2+0+0)
2.039Q2=5.7
Q=1.672 ft3/s answer
Velocity heads at 2, 3, and 4
v222g=6.4443(1.6722)=18.02 ft
v322g=v422g=2.039(1.6722)=5.7 ft
Energy equation between 1 and 2
E1−HL1−2=E2
(v122g+p1γ+z1)−HL1−2=(v222g+p2γ+z2)
(0+0+10)−1.1=(18.02+p2γ+15)
p2γ=−24.12 ft
p2=−24.12γ=−24.12(0.9×62.4)
p2=−1354.58 psf
p2=−1354.58lbft2×(1ft12in)2
p2=−9.41 psi answer
Energy equation between 3 and 4
E3−HL3−4=E4
(v322g+p3γ+z3)−HL3−4=(v422g+p4γ+z4)
(5.7+p3γ+15)−2.5=(5.7+0+0)
p3γ=−12.5 ft
p3=−12.5γ=−12.5(0.9×62.4)
p3=−702 psf
p3=−702lbft2×(1ft12in)2
p3=−4.875 psi answer
Checking
Energy equation between 2 and 3
E2−HL2−3=E3
(v222g+p2γ+z2)−HL2−3=(v322g+p3γ+z3)
(18.02−24.12+15)−0.7=(5.7−12.5+15)
8.2=8.2 (check!)
Tabulated result
Point |
Elevation head (ft) |
Velocity head (ft) |
Pressure head (ft) |
Total head (ft) |
1 |
10 |
0 |
0 |
10 |
2 |
15 |
18.02 |
-24.12 |
8.9 |
3 |
15 |
5.7 |
-12.5 |
8.2 |
4 |
0 |
5.7 |
0 |
5.7 |