atmospheric pressure

Determine the absolute pressure in a vessel of mercury at a point 200 mm below its surface.

A.   126 kPa C.   128 kPa
B.   130 kPa D.   132 kPa


Problem 18 - Bernoulli's Energy Theorem

Problem 18
Figure 4-09 shows a siphon discharging oil (sp gr 0.90). The siphon is composed of 3-in. pipe from A to B followed by 4-in. pipe from B to the open discharge at C. The head losses are from 1 to 2, 1.1 ft; from 2 to 3, 0.7 ft; from 3 to 4, 2.5 ft. Compute the discharge, and make table of heads at point 1, 2, 3, and 4.



Problem 17 - Bernoulli's Energy Theorem

Problem 17
In Figure 4-08 is shown a siphon discharging water from reservoir A into the air at B. Distance 'a' is 1.8 m, 'b' is 6 m, and the diameter is 150 mm throughout. If there is a frictional loss of 1.5 m between A and the summit, and 1.5 m between the summit and B, what is the absolute pressure at the summit in kiloPascal? Also determine the rate of discharge in cubic meter per second and in gallons per minute.



Subscribe to RSS - atmospheric pressure