Problem 20 - Bernoulli's Energy Theorem

Problem 20
The 600-mm pipe shown in Figure 4-11 conducts water from reservoir A to a pressure turbine, which discharges through another 600-mm pipe into tailrace B. The loss of head from A to 1 is 5 times the velocity head in the pipe and the loss of head from 2 to B is 0.2 times the velocity head in the pipe. If the discharge is 700 L/s, what power is being given up by the water to the turbine and what are the pressure heads at 1 and 2?
 

04-014-flow-with-turbine.gif

 

Problem 17 - Bernoulli's Energy Theorem

Problem 17
In Figure 4-08 is shown a siphon discharging water from reservoir A into the air at B. Distance 'a' is 1.8 m, 'b' is 6 m, and the diameter is 150 mm throughout. If there is a frictional loss of 1.5 m between A and the summit, and 1.5 m between the summit and B, what is the absolute pressure at the summit in kiloPascal? Also determine the rate of discharge in cubic meter per second and in gallons per minute.
 

04-011-siphon.gif

 

Problem 14 - Bernoulli's Energy Theorem

Problem 14
Water discharges through an orifice in the side of a large tank shown in Figure 4-06. The orifice is circular in cross section and 50 mm in diameter. The jet is the same diameter as the orifice. The liquid is water, and the surface elevation is maintained at a height h of 3.8 m above the center of the jet. Compute the discharge: (a) neglecting loss of head; (b) considering the loss of head to be 10 percent of h.
 

04-009-tank-orifice-bernoulli.gif

 

Problem 13 - Bernoulli's Energy Theorem

Problem 13
The 150-mm pipe line shown in Figure 4-05 conducts water from the reservoir and discharge at a lower elevation through a nozzle which has a discharge diameter of 50 mm. The water surface in the reservoir 1 is at elevation 30 m, the pipe intake 2 and 3 at elevation 25 m and the nozzle 4 and 5 at elevation 0. The head losses are: from 1 to 2, 0; from 2 to 3, 0.6 m; from 3 to 4, 9 m; from 4 to 5, 3 m. Compute the discharge and make a table showing elevation head, pressure head, and total head at each of the five points.
 

04-008-reservoir-pipe-nozzle.gif