Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.4 days 20 hours ago
- Sir what if we want to find…4 days 20 hours ago
- Hello po! Question lang po…3 weeks 1 day ago
- 400000=120[14π(D2−10000)]
(…1 month 3 weeks ago - Use integration by parts for…2 months 3 weeks ago
- need answer2 months 3 weeks ago
- Yes you are absolutely right…2 months 3 weeks ago
- I think what is ask is the…2 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…2 months 4 weeks ago
- Why did you use (1/SQ root 5…2 months 4 weeks ago
Re: integral calculus logarithmic functions
hindi po malinaw kung ano talaga ang equation. You can use symbols of grouping (brackets) para mas madali maintindihan.
Re: integral calculus logarithmic functions
In reply to Re: integral calculus logarithmic functions by Jhun Vert
patulong nga po. 3x^4+4x^3+16x^2+20x+9 over (x+20)(x^2+3)^2 pasagot nga po yan hirap po kase
Re: integral calculus logarithmic functions
In reply to Re: integral calculus logarithmic functions by Jeanvill Palad…
Ano ang tanong dito? Mahirap manghula kuna ano ang ibig mong sabihin.
Re: integral calculus logarithmic functions
Binasa ko uli ang post mo at naintindihan ko na. You ask why
$\displaystyle \int \dfrac{dx}{x(1 + x^2)} = \dfrac{1}{2} \, \ln \left( \dfrac{x^2}{1 + x^2} \right) + C$
am I right? If so, here is the detail:
$\dfrac{1}{x(1 + x^2)} = \dfrac{A}{x} + \dfrac{Bx + C}{1 + x^2}$
$1 = A(1 + x^2) + Bx^2 + Cx$
When x = 0, A = 1
Equate x2: 0 = A + B, B = -1
Equate x: C = 0
Thus,
$\displaystyle \int \dfrac{dx}{x(1 + x^2)} = \int \left( \dfrac{1}{x} - \dfrac{x}{1 + x^2} \right) \, dx$
$\displaystyle \int \dfrac{dx}{x(1 + x^2)} = \int \dfrac{dd}{x} - \dfrac{1}{2} \int \dfrac{2x \, dx}{1 + x^2}$
$\displaystyle \int \dfrac{dx}{x(1 + x^2)} = \ln x - \dfrac{1}{2} \ln (1 + x^2) + C$
$\displaystyle \int \dfrac{dx}{x(1 + x^2)} = \dfrac{1}{2} \left[ 2\ln x - \ln (1 + x^2) \right] + C$
$\displaystyle \int \dfrac{dx}{x(1 + x^2)} = \dfrac{1}{2} \left[ \ln x^2 - \ln (1 + x^2) \right] + C$
$\displaystyle \int \dfrac{dx}{x(1 + x^2)} = \dfrac{1}{2} \, \ln \left( \dfrac{x^2}{1 + x^2} \right) + C$
as we expect it to be.