Minima Maxima: 9a³y=x(4a-x)³

Patulong po ulit ako mam/sir
Yung process po sana ulit
9a²y=x(4a+x)³
Yung ans nya po is (a,3a) maximum
Thanks in advance mam/sir

I think something is wrong with your given. If you check for x = a, y ≠ 3a. Here is the checking of your answer key.

Set x = a and solve for y
9a2y=a(4a+a)3

9a2y=125a4

y=125a29   ←   not equal to 3a
 

Kindly check the given.
 

9a3y=x(4ax)3
 

Differentiate y in terms of x using product formula
9a3y=3x(4ax)2+(4ax)3
 

Simplify (optional)
9a3y=(4ax)2[3x+(4ax)]

9a3y=(4ax)2(4a4x)

9a3y=4(4ax)2(ax)
 

Determine the 2nd derivative
9a3y=4(4ax)28(4ax)(ax)

9a3y=4(4ax)[(4ax)+2(ax)]

9a3y=4(4ax)(6a3x)

9a3y=12(4ax)(2ax)
 

Set y' to zero for maxima and/or minima
0=4(4ax)2(ax)
 

For (4a - x)2 = 0:

x=4a
 

9a3y=4a(4a4a)3

y=0
 

Check if Maxima or Minima.
9a3y=12(4a4a)(2a4a)

y=0   ←   inflection point (the curve is neither upward nor downward)
 

Hence, (4a, 0) is neither maximum nor minimum

 

For a - x = 0

x=a
 

9a3y=a(4aa)3

y=3a
 

Check if Maxima or Minima.
9a3y=12(4aa)(2aa)

y=()   ←   the curve is concave downward
 

Hence, (a, 0) is maximum.

 

Here is the graph of the curve with a = 1
 

screenshot_2020-04-10_14.23.04.png