Given:
$b = 150 ~ \text{mm}$
$d = 300 ~ \text{mm}$
Part 1: P = 30 kN
$V = \frac{1}{2}P = \frac{1}{2}(30)$
$V = 15 ~ \text{kN}$
$f_v = \dfrac{3V}{2bd'}\left( \dfrac{d}{d'} \right)^2$
$1.0 = \dfrac{3(15\,000)}{2(150d')}\left( \dfrac{300}{d'} \right)^2$
$d' = 238 ~ \text{mm}$
depth of notch = 300 - 238 = 62 mm answer
Part 2: Depth of notches = 100 mm
$d' = d - 100 = 300 - 100$
$d' = 200 ~ \text{mm}$
$f_v = \dfrac{3V}{2bd'}\left( \dfrac{d}{d'} \right)^2$
$1.0 = \dfrac{3V(1000)}{2(150)(200)}\left( \dfrac{300}{200} \right)^2$
$V = 8.89 ~ \text{kN}$
Safe value of P = 2V = 17.78 kN answer
Part 3: P = 25 kN and depth of notches = 150 mm
$d' = d - 150 = 300 - 150 = 150 ~ \text{mm}$
$V = \frac{1}{2}P = \frac{1}{2}(25) = 12.5 ~ \text{kN}$
$f_v = \dfrac{3V}{2bd'}\left( \dfrac{d}{d'} \right)^2$
$f_v = \dfrac{3(12\,500}{2(150)(150)}\left( \dfrac{300}{150} \right)^2$
$f_v = 3.33 ~ \text{MPa}$ answer