Apply Cosine Law to ΔAPB
$15^2 = 9^2 + x^2 - 2(9x) \cos \theta$
$18x \cos \theta = 9^2 + x^2 - 15^2$
$\cos \theta = \dfrac{x^2 - 144}{18x}$
Apply cosine Law to ΔBPC
$12^2 = 9^2 + x^2 - 2(9x) \cos (90^\circ - \theta)$
$18x \cos (90^\circ - \theta) = 9^2 + x^2 - 12^2$
$\cos (90^\circ - \theta) = \dfrac{x^2 - 63}{18x}$
$\sin \theta = \dfrac{x^2 - 63}{18x}$
$\sin^2 \theta + \cos^2 \theta = 1$
$\left( \dfrac{x^2 - 63}{18x} \right)^2 + \left( \dfrac{x^2 - 144}{18x} \right)^2 = 1$
$\dfrac{(x^2 - 63)^2}{324x^2} + \dfrac{(x^2 - 144)^2}{324x^2} = 1$
$(x^2 - 63)^2 + (x^2 - 144)^2 = 324x^2$
$(x^4 - 126x^2 + 3969) + (x^4 - 288x^2 + 20736) = 324x^2$
$2x^4 - 738x^2 + 24705 = 0$
$x^2 = 331.77 ~ \text{ and } ~ 37.23$
$x = 18.21 ~ \text{ and } ~ 6.10$
Use x = 18.21 cm
$A = \frac{1}{2}x^2 = \frac{1}{2}(18.21^2)$
$A = 165.80 ~ \text{cm}^2$ answer