
$\Sigma M_{R2} = 0$
$4R_1 + 200(2) = \frac{1}{2}(3)(400)(1)$
$R_1 = 50 \, \text{N}$
$\Sigma M_{R1} = 0$
$4R_2 = 200(6) + \frac{1}{2}(3)(400)(3)$
$R_2 = 750 \, \text{N}$
$(Area_{AB}) \, \bar{X}_A = \frac{1}{2}(4)(200)(\frac{8}{3}) - \frac{1}{4}(3)(600)(\frac{17}{5})$
$(Area_{AB}) \, \bar{X}_A = -463.33 \, \text{N}\cdot\text{m}^3$ answer
The value of (AreaAB) barred(X)A is negative; therefore point A is below the tangent through B, thus the tangent through B slopes downward to the right. See the approximate elastic curve shown to the right and refer to the rules of sign for more information.