$R = P_1 + P_2+ P_3$
$R = 4^k + 8^k + 6^k$
$R = 18 \, \text{kips}$
$R = 18,000 \, \text{lbs}$
$xR = 9P_2 + (9 + 18)P_3$
$x(18) = 9(8) + (9 + 18)(6)$
$x = 13 \, \text{ft} \,\,$ the resultant R is 13 ft from P1
Maximum moment under P1
$\Sigma M_{R2} = 0$
$44R_1 = 15.5R$
$44R_1 = 15.5(18)$
$R_1 = 6.34091 \, \text{kips}$
$R_1 = 6,340.91 \, \text{lbs}$
$M_{To\,\,the\,\,left\,\,of\,\,P_1} = 15.5R_1$
$M_{To\,\,the\,\,left\,\,of\,\,P_1} = 15.5(6340.91)$
$M_{To\,\,the\,\,left\,\,of\,\,P_1} = 98,284.1 \, \text{lb}\cdot\text{ft}$
Maximum moment under P2
$\Sigma M_{R2} = 0$
$44R_1 = 20R$
$44R_1 = 20(18)$
$R_1 = 8.18182 \, \text{kips}$
$R_1 = 8,181.82 \, \text{lbs}$
$M_{To\,\,the\,\,left\,\,of\,\,P_2} = 20R_1 - 9P_1$
$M_{To\,\,the\,\,left\,\,of\,\,P_2} = 20(8181.82) - 9(4000)$
$M_{To\,\,the\,\,left\,\,of\,\,P_2} = 127,636.4 \, \text{lb}\cdot\text{ft}$
Maximum moment under P3
$\Sigma R_1 = 0$
$44R_2 = 15R$
$44R_2 = 15(18)$
$R_2 = 6.13636 \, \text{kips}$
$R_2 = 6,136.36 \, \text{lbs}$
$M_{To\,\,the\,\,right\,\,of\,\,P_3} = 15R_2$
$M_{To\,\,the\,\,right\,\,of\,\,P_3} = 15(6,136.36)$
$M_{To\,\,the\,\,right\,\,of\,\,P_3} = 92,045.4 \, \text{lb}\cdot\text{ft}$
Thus,
$M_{max} = M_{To\,\,the\,\,left\,\,of\,\,P_2}$
$M_{max} = 127,636.4 \, \text{lb}\cdot\text{ft} \,\,$ answer
The maximum shear will occur when P1 is over the support.
$\Sigma M_{R2} = 0$
$44R_1 = 31R$
$44R_1 = 31(18)$
$R_1 = 12.6818 \, \text{kips}$
$R_1 = 12,681.8 \, \text{lbs}$
Thus, $V_{max} = 12,681.8 \, \text{lbs} \,\,$ answer