R=P1+P2+P3
R=4k+8k+6k
R=18kips
R=18,000lbs
xR=9P2+(9+18)P3
x(18)=9(8)+(9+18)(6)
x=13ft the resultant R is 13 ft from P1
Maximum moment under P1
ΣMR2=0
44R1=15.5R
44R1=15.5(18)
R1=6.34091kips
R1=6,340.91lbs
MTotheleftofP1=15.5R1
MTotheleftofP1=15.5(6340.91)
MTotheleftofP1=98,284.1lb⋅ft
Maximum moment under P2
ΣMR2=0
44R1=20R
44R1=20(18)
R1=8.18182kips
R1=8,181.82lbs
MTotheleftofP2=20R1−9P1
MTotheleftofP2=20(8181.82)−9(4000)
MTotheleftofP2=127,636.4lb⋅ft
Maximum moment under P3
ΣR1=0
44R2=15R
44R2=15(18)
R2=6.13636kips
R2=6,136.36lbs
MTotherightofP3=15R2
MTotherightofP3=15(6,136.36)
MTotherightofP3=92,045.4lb⋅ft
Thus,
Mmax=MTotheleftofP2
Mmax=127,636.4lb⋅ft answer
The maximum shear will occur when P1 is over the support.
ΣMR2=0
44R1=31R
44R1=31(18)
R1=12.6818kips
R1=12,681.8lbs
Thus, Vmax=12,681.8lbs answer