For triaxial deformation (tensile triaxial stresses):
(compressive stresses are negative stresses)
εy=1E[σy−ν(σx+σz)]
σx=PxAyz=484(2)=6.0 ksi (tension)
σy=PyAxz=604(3)=5.0 ksi (compression)
σz=PzAxy=542(3)=9.0ksi (tension)
Thus,
εy=129×106[−5000−0.30(6000+9000)]
εy=−3.276×10−4
εy is negative, thus, tensile force is required in the x-direction to produce the same deformation in the y-direction as the original forces.
For equivalent single force in the x-direction:
(uniaxial stress)
ν=−εyεx
−νεx=εy
−νσxE=εy
−0.30(σx29×106)=−3.276×10−4
σx=31666.67psi
σx=Px4(2)=31666.67
Px=253333.33lb (tension)
Px=253.33 kips (tension) answer