$\varepsilon_z = \dfrac{1}{E} [ \, \sigma_z - \nu (\sigma_x + \sigma_y) \, ]$
Where
σx = 6.0 ksi (tension)
σy = 5.0 ksi (compression)
σz = 9.0 ksi (tension)
$\varepsilon_z = \dfrac{1}{29 \times 10^6} [ \, 9000 - 0.3(6000 - 5000) \, ]$
$\varepsilon_z = 3 \times 10^{-4}$
εz is positive, thus positive stress is needed in the x-direction to eliminate deformation in z-direction.
The application of loads is still simultaneous:
(No deformation means zero strain)
$\varepsilon_z = \dfrac{1}{E} [ \, \sigma_z - \nu (\sigma_x + \sigma_y) \, ] = 0$
$\sigma_z = \nu(\sigma_x + \sigma_y)$
Where
σy = 5.0 ksi (compression)
σσz = 9.0 ksi (tension)
$9000 = 0.30(\sigma_x - 5000)$
$\sigma_x = 35\,000 \, \text{psi}$
$\sigma_{added} + 6000 = 35\,000$
$\sigma_{added} = 29\,000 \, \text{psi}$
$\dfrac{P_{added}}{2(4)} = 29\,000$
$P_{added} = 232\,000 \, \text{lb}$
$P_{added} = 232 \, \text{ kips}$ answer