$\displaystyle R = \int_0^{16} y \, dx = 90 \int_0^{16} x^{1/2} \, dx$

$R = 90 \left[ \dfrac{x^{3/2}}{3/2} \right]_0^{16} = 60 \left[ x^{3/2} \right]_0^{16}$

$R = 60(16^{3/2} - 0^{3/2})$

$R = 3840 \, \text{ lb}$ upward

$\displaystyle Rd = \int_0^{16} x(y \, dx) = 90 \int_0^{16} x(x^{1/2}\, dx)$

$\displaystyle 3840d = 90 \int_0^{16} x^{3/2}\, dx$

$3840d = 90 \left[ \dfrac{x^{5/2}}{5/2} \right]_0^{16} = 36 \left[ x^{5/2} \right]_0^{16}$

$3840d = 36(16^{5/2} - 0^{5/2})$

$3840d = 36\,864$

$d = 9.6 \, \text{ ft}$

Thus, R = 3840 lb upward at 9.6 ft from the tip of the wing. *answer*