Recall the following moment of inertia for a rectangle of height h and width b.
Centroidal moment of inertia = bd
3/12
Moment of inertia at the base = bd
3/3
For the vertical strip shown below, b = dx and d = y
$3x^2 + 40y - 4800 = 0$
$40y = 4800 - 3x^2$
$y = 120 - \dfrac{3}{40}x^2$
$\displaystyle I_x = 2\int_0^{40} \dfrac{dx~y^3}{3}$
$\displaystyle I_x = \dfrac{2}{3}\int_0^{40} y^3~dx$
$\displaystyle I_x = \dfrac{2}{3}\int_0^{40} (120 - \dfrac{3}{40}x^2)^3~dx$
$\displaystyle I_x = \dfrac{2}{3}\int_0^{40} [ \, 120^3 - 3(120^2)(\dfrac{3}{40}x^2) + 3(120)(\dfrac{3}{40}x^2)^2 - (\dfrac{3}{40}x^2)^3~dx$
$\displaystyle I_x = \dfrac{2}{3}\int_0^{40} (1728000 - 3240x^2 + \dfrac{81}{40}x^4 - (\dfrac{27}{64\,000}x^6)~dx$
$I_x = \dfrac{2}{3} \left[1728000x - 1080x^3 + \dfrac{81x^5}{200} - (\dfrac{27x^7}{448\,000} \right]_0^{40}$
$I_x = \dfrac{2}{3}\left[1728000(40) - 1080(40^3) + \dfrac{81(40^5)}{200} - (\dfrac{27(40^7)}{448\,000} \right] - 0$
$I_x = 21\,065\,142.86 \, \text{ unit}^4$ (okay!)