Formula to use
$r^{th} \text{ term} = ({^nC_m})(a^{n - m})(b^m)$
For (x - 2/x)6:
a = x
b = -2/x
n = 6
$r^{th} \text{ term} = ({^6C_m})(x^{6 - m})\left( -\dfrac{2}{x} \right)^m$
$r^{th} \text{ term} = ({^6C_m})(-2)^m (x^{6 - 2m})$
Let $({^6C_m})(-2)^m = K_j$
For the rth term involving K1x0:
$6 - 2m = 0$
$m = 3$
$K_1 = ({^6C_3})(-2)^3 = -160$
For the rth term involving K2x2:
$6 - 2m = 2$
$m = 2$
$K_2 = ({^6C_2})(-2)^2 = 60$
The constant term in the expansion of (2 + 3/x2)(x - 2/x)6 is:
$K = 2K_1 + 3 K_2 = 2(-160) + 3(60)$
$K = -140$ ← answer