## What is the Coefficient of the 8th Term of the Expansion of (2x - 1/x)^10?

**Problem**

In the expansion of (2*x* - 1/*x*)^{10}, find the coefficient of the 8^{th} term.

A. 980 | C. 960 |

B. 970 | D. 990 |

**Problem**

In the expansion of (2*x* - 1/*x*)^{10}, find the coefficient of the 8^{th} term.

A. 980 | C. 960 |

B. 970 | D. 990 |

**Problem**

Find the term that is independent of *x* in the expansion of $\left( 2 + \dfrac{3}{x^2} \right)\left( x - \dfrac{2}{x} \right)^6$.

A. 180 | C. -140 |

B. 160 | D. -160 |

**The Expansion of (a + b) ^{n}**

If $n$ is any positive integer, then

$(a + b)^n = a^n + {_nC_1}a^{n - 1}b + {_nC_2}a^{n - 2}b^2 + \, \cdots \, + {_nC_m}a^{n - m}b^m + \, \cdots \, + b^n$

Where

${_nC_m}$ = combination of *n* objects taken *m* at a time.

- Read more about Binomial Theorem
- Log in or register to post comments