Binomial Theorem

The Expansion of (a + b)n
If   $n$   is any positive integer, then

$(a + b)^n = a^n + {_nC_1}a^{n - 1}b + {_nC_2}a^{n - 2}b^2 + \, \cdots \, + {_nC_m}a^{n - m}b^m + \, \cdots \, + b^n$
 

Where
${_nC_m}$ = combination of n objects taken m at a time.