Properties of Laplace Transform

Constant Multiple
If   a   is a constant and   f(t)   is a function of   t,   then
 

L{af(t)}=aL{f(t)}

 

Example: L(4cost)=4L(cost)
 

Linearity Property
If   a   and   b   are constants while   f(t)   and   g(t)   are functions of   t   whose Laplace transform exists, then
 

L{af(t)+bg(t)}=aL{f(t)}+bL{g(t)}

 

Example: L(3t24t+9)=3L(t2)4L(t)+9L(1)
 

First Shifting Property
If   L{f(t)}=F(s),   then,
 

L{eatf(t)}=F(sa)

 

Second Shifting Property
If   L{f(t)}=F(s),   and   g(t)={f(ta)t>a0t<a
 

then,

L{g(t)}=easF(s)

 

Change of Scale Property
If   L{f(t)}=F(s),   then,
 

L{f(at)}=1aF(sa)

 

Multiplication by Power of t
If   L{f(t)}=F(s),   then,
 

L{tnf(t)}=(1)ndndsnF(s)=(1)nF(n)(s)

where   n=1,2,3,...
 

Division by t
If   L{f(t)}=F(s),   then,
 

L{f(t)t}=sF(u)du

provided   lim   exists.
 

Transforms of Derivatives
The Laplace transform of the derivative   f'(t)   exists when   s > a,   and
 

\mathcal{L} \left\{ f'(t) \right\} = s\mathcal{L} \left\{ f(t) \right\} - f(0)

 

In general, the Laplace transform of nth derivative is

\mathcal{L} \left\{ f^n(t) \right\} = s^n\mathcal{L} \left\{ f(t) \right\} - s^{n - 1}f(0) - s^{n - 2}f'(0) - s^{n - 3}f''(0) - \, ... \, - f^{n - 1}(0)