Properties of Laplace Transform
Constant Multiple
If $a$ is a constant and $f(t)$ is a function of $t$, then
Example: $\mathcal{L} (4 \cos t) = 4 \, \mathcal{L} (\cos t)$
Linearity Property
If $a$ and $b$ are constants while $f(t)$ and $g(t)$ are functions of $t$ whose Laplace transform exists, then
Example: $\mathcal{L} (3t^2 - 4t + 9) = 3 \, \mathcal{L} (t^2) - 4 \, \mathcal{L} (t) + 9 \, \mathcal{L} (1)$
First Shifting Property
If $\mathcal{L} \left\{ f(t) \right\} = F(s)$, then,
Second Shifting Property
If $\mathcal{L} \left\{ f(t) \right\} = F(s)$, and $g(t) = \begin{cases} f(t - a) & t \gt a \\ 0 & t \lt a \end{cases}$
then,
Change of Scale Property
If $\mathcal{L} \left\{ f(t) \right\} = F(s)$, then,
Multiplication by Power of $t$
If $\mathcal{L} \left\{ f(t) \right\} = F(s)$, then,
where $n = 1, \, 2, \, 3, \, ...$
Division by $t$
If $\mathcal{L} \left\{ f(t) \right\} = F(s)$, then,
provided $\displaystyle \lim_{t \rightarrow 0} \left[ \dfrac{f(t)}{t} \right]$ exists.
Transforms of Derivatives
The Laplace transform of the derivative $f'(t)$ exists when $s > a$, and
In general, the Laplace transform of nth derivative is