$\Sigma M_D = 0$
$5R_1 = 50(0.5) + 25$
$R_1 = 10 \, \text{kN}$
$\Sigma M_A = 0$
$5R_2 + 25 = 50(4.5)$
$R_2 = 40 \, \text{kN}$
To draw the Shear Diagram
- VA = R1 = 10 kN
- VB = VA + Area in load diagram
VB = 10 + 0 = 10 kN
- VC = VB + Area in load diagram
VC = 10 + 0 = 10 kN
- VD = VC + Area in load diagram
VD = 10 - 10(3) = -20 kN
VD2 = -20 + R2 = 20 kN
- VE = VD2 + Area in load diagram
VE = 20 - 10(2) = 0
- Solving for x:
x / 10 = (3 - x) / 20
20x = 30 - 10x
x = 1 m
To draw the Moment Diagram
- MA = 0
- MB = MA + Area in shear diagram
MB = 0 + 1(10) = 10 kN·m
MB2 = 10 - 25 = -15 kN·m
- MC = MB2 + Area in shear diagram
MC = -15 + 1(10) = -5 kN·m
- Mx = MC + Area in shear diagram
Mx = -5 + ½(1)(10) = 0
- MD = Mx + Area in shear diagram
MD = 0 - ½(2)(20) = -20 kN·m
- ME = MD + Area in shear diagram
ME = -20 + ½ (2)(20) = 0