Derivation of formula for volume of a frustum of pyramid/cone
Frustum of a pyramid and frustum of a cone
The formula for frustum of a pyramid or frustum of a cone is given by
Where:
h = perpendicular distance between A1 and A2 (h is called the altitude of the frustum)
A1 = area of the lower base
A2 = area of the upper base
Note that A1 and A2 are parallel to each other.
Derivation:
$V_1 = \frac{1}{3}A_1 y$
$V_2 = \frac{1}{3}A_2 (y - h)$
$V = V_1 - V_2 = \frac{1}{3}A_1 y - \frac{1}{3}A_2 (y - h)$
$V = \frac{1}{3}A_1 y - \frac{1}{3}A_2 y + \frac{1}{3}A_2 h$
$V = \frac{1}{3} \, \left[ \, (A_1 - A_2) y + A_2 h \right]$ → Equation (1)
By similar solids (Click here for more information about Similar Solids):
$\dfrac{A_2}{A_1} = \left( \dfrac{y - h}{y} \right)^2$
$\sqrt{\dfrac{A_2}{A_1}} = 1 - \dfrac{h}{y}$
$\dfrac{h}{y} = 1 - \sqrt{\dfrac{A_2}{A_1}} = 1 - \dfrac{\sqrt{A_2}}{\sqrt{A_1}}$
$\dfrac{h}{y} = \dfrac{\sqrt{A_1} - \sqrt{A_2}}{\sqrt{A_1}}$
$\dfrac{y}{h} = \dfrac{\sqrt{A_1}}{\sqrt{A_1} - \sqrt{A_2}}$
$y = \dfrac{\sqrt{A_1}}{\sqrt{A_1} - \sqrt{A_2}}\,h = \left( \dfrac{\sqrt{A_1}}{\sqrt{A_1} - \sqrt{A_2}} \, \times \, \dfrac{\sqrt{A_1} + \sqrt{A_2}}{\sqrt{A_1} + \sqrt{A_2}}\right)\,h$
$y = \dfrac{A_1 + \sqrt{A_1A_2}}{A_1 - A_2}\,h$
Substitute y to Equation (1),
$V = \frac{1}{3} \, \left[ \, (A_1 - A_2) \left( \dfrac{A_1 + \sqrt{A_1A_2}}{A_1 - A_2}\,h \right) + A_2 h \right]$
$V = \frac{1}{3} \, \left[ \, (A_1 + \sqrt{A_1A_2})h + A_2 h \, \right]$
$V = \frac{1}{3} \, \left[ \, A_1 + \sqrt{A_1A_2} + A_2 \, \right] \, h$