Moment of Inertia and Radius of Gyration

Moment of Inertia
Moment of inertia, also called the second moment of area, is the product of area and the square of its moment arm about a reference axis.
 

Moment of inertia about the x-axis:

$\displaystyle I_x = \int y^2 \, dA$

 

000_moment_of_inertia.gif

 

Moment of inertia about the y-axis:

$\displaystyle I_y = \int x^2 \, dA$

 

Polar Moment of Inertia:
Polar moment of inertia is the moment of inertia about about the z-axis.

$J = I_x + I_y$

$\displaystyle J = \int r^2 \, dA$

 

Radius of Gyration

$k = \sqrt{\dfrac{I}{A}}$

$k_x = \sqrt{\dfrac{I_x}{A}}$

$k_y = \sqrt{\dfrac{I_y}{A}}$

$k_z = \sqrt{\dfrac{J}{A}}$

 

Transfer Formula for Moment of Inertia
 

000_transfer_of_moment_of_inertia.gif

 

$I = \bar{I} + Ad^2$

 

Where
$x'$ = centroidal axis
$x$ = any axis parallel to the centroidal axis
$I$ = moment of inertia about the x-axis
$\bar{I}$ = centroidal moment of inertia
$A$ = area of the section
$d$ = distance between x and x’

 

In the same manner, the transfer formula for polar moment of inertia and the radii of gyration are respectively

$J = \bar{J} + Ad^2$

$k^2 = {\bar{k}}^2 + d^2$

 

Product of Inertia

$\displaystyle I_{xy} = \int xy \, dA$

 

Moment of Inertia of Common Shapes

Shape Moment of Inertia Radius of Gyration
Rectangle

000_moment_of_inertia_rectangle.gif

$\bar{I}_x = \dfrac{bh^3}{12}$

$I_x = \dfrac{bh^3}{3}$

$\bar{k}_x = \dfrac{h}{\sqrt{12}}$

$k_x = \dfrac{h}{\sqrt{3}}$

Triangle

000_moment_of_inertia_triangle.gif

$\bar{I}_x = \dfrac{bh^3}{36}$

$I_x = \dfrac{bh^3}{12}$

$\bar{k}_x = \dfrac{h}{\sqrt{18}}$

$k_x = \dfrac{h}{\sqrt{6}}$

Circle

000_moment_of_inertia_circle.gif

$\bar{I}_x = \dfrac{\pi r^4}{4}$

$\bar{J} = \dfrac{\pi r^4}{2}$

$\bar{k}_x = \dfrac{r}{2}$

$\bar{k}_z = \dfrac{r}{\sqrt{2}}$

Semicircle

000_moment_of_inertia_semi-circle.gif

$I_x = \bar{I}_y = \dfrac{\pi r^4}{8}$

$\bar{I}_x = 0.11r^4$

$k_x = \bar{k}_y = \dfrac{r}{2}$

$\bar{k}_x = 0.264r$

Quarter circle

000_moment_of_inertia_quarter-circle.gif

$I_x = I_y = \dfrac{\pi r^4}{16}$

$\bar{I}_x = \bar{I}_y = 0.055r^4$

$k_x = k_y = \dfrac{r}{2}$

$\bar{k}_x = \bar{k}_y = 0.264r$

Ellipse

000_moment_of_inertia_ellipse.gif

$\bar{I}_x = \dfrac{\pi ab^3}{4}$

$\bar{I}_y = \dfrac{\pi a^3b}{4}$

$\bar{k}_x = \dfrac{b}{2}$

$\bar{k}_y = \dfrac{a}{2}$