Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…5 days 13 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…5 days 13 hours ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt415 days 13 hours ago
- Thank you so much4 days 23 hours ago
- How did you get the 2.8 mins…4 days 22 hours ago
- How did you get the distance…4 days 22 hours ago



Isolate the segments to the
Isolate the segments to the left of B and to the right of B, then solve for the reactions.
$M_A = -256.67 ~ \text{kN}\cdot\text{m}$
$R_A = 131.67 ~ \text{kN}$
$R_B = 21.67 ~ \text{kN}$
$R_D = 88.33 ~ \text{kN}$
Draw then the moment diagram by parts for each segment. Look for the best location of moment center for your diagram. I chose B for segment AB and C for segment BE. You may choose another point per your judgement.
Notice that the value of moments under segments containing 2EI are divided by 2.
Draw the approximate elastic curve (not shown) and based on your drawing proceed with the concepts of area moment method to solve for the required. I will show here the calculations for the deflection at B knowing that the tangent to the elastic curve at A is horizontal.
$\delta_B = \dfrac{1}{EI} \, t_{B/A}$
$\delta_B = \dfrac{1}{EI}\left( \text{Area}_{AB} \right) \cdot \bar{X_B}$
From the Moment Diagram by Parts
$\delta_B = \dfrac{1}{EI} \Big[ \frac{1}{2}(2)(131.67)\left( \frac{2}{3} \right) - 128.33(2)(1) - \frac{1}{4}(2)(3.33)\left( \frac{2}{5} \right) \Big]$
$\delta_B = -\dfrac{169.56}{EI} ~ \text{kN}\cdot\text{m}^3$
The negative sign in the answer indicates that B is below the tangent line through A which is our reference tangent for the deviation.
In the same way, analyze the tangents and the elastic curve to get the rest of the required items.
I request you share to us your solution when you're done.