# Minima maxima: Arbitrary constants for a cubic

## New forum topics

- Please help me solve this problem: Moment capacity of a rectangular timber beam
- Solid Mensuration: Prismatoid
- Differential Equation: (1-xy)^-2 dx + [y^2 + x^2 (1-xy)^-2] dy = 0
- Differential Equation: y' = x^3 - 2xy, where y(1)=1 and y' = 2(2x-y) that passes through (0,1)
- Tapered Beam
- Vickers hardness: Distance between indentations
- Time rates: Question for Problem #12
- Make the curve y=ax³+bx²+cx+d have a critical point at (0,-2) and also be a tangent to the line 3x+y+3=0 at (-1,0).
- Minima maxima: Arbitrary constants for a cubic
- Minima Maxima: y=ax³+bx²+cx+d

## Steps:

Steps:

Result:

d= 1.Result: -27

a+ 9b- 3c= 6.Result: -

a+b-c= 2.y'to zero. Because (-1, 3) is a critical point, replacexwith -1.Result: 3

a- 2b+c= 0.## Paano ko po makuha yung value

Paano ko po makuha yung value ni a at b?

Eqn.2 at eqn 3 nalang po natira.

0=0 po yung eqn.4

C=-3a+2b kasi value ni c. At sinubstitute ko sa eqn. 2-4

## Eq. (1): -27a + 9b - 3c = 6

Eq. (2): -27a + 9b - 3c = 6

Eq. (3): -a + b - c = 2

Eq. (4): 3a - 2b + c = 0

Eq. (2) - 3*Eq. (3)

-24a + 6b = 0

6b = 24a

b = 4a

Eq. (3) + Eq. (4)

2a - b = 2

2a - 4a = 2

-2a = 2

a = -1

## Thank you sir Alexander and

Thank you sir Alexander and Sir Jhun Vert