Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…5 days 22 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…5 days 22 hours ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 3 weeks ago
- where do you get the sqrt415 days 22 hours ago
- Thank you so much5 days 8 hours ago
- How did you get the 2.8 mins…5 days 7 hours ago
- How did you get the distance…5 days 7 hours ago


$x\,dx + \sin^2 (y/x) \, (y\
$x\,dx + \left[ \sin^2 \left( \dfrac{y}{x} \right) \right](y\,dx - x\,dy) = 0$
$\dfrac{x\,dx}{x^2} + \left[ \sin^2 \left( \dfrac{y}{x} \right) \right]\left( \dfrac{y\,dx - x\,dy}{x^2} \right) = 0$
$\dfrac{dx}{x} - \left[ \sin^2 \left( \dfrac{y}{x} \right) \right]\left( \dfrac{x\,dy - y\,dx}{x^2} \right) = 0$
$\dfrac{dx}{x} - \left[ \sin^2 \left( \dfrac{y}{x} \right) \right] \, d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2}\left[ 1 - \cos \left( \dfrac{2y}{x} \right) \right] \, d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2} d\left( \dfrac{y}{x} \right) + \dfrac{1}{2} \cos \left( \dfrac{2y}{x} \right) d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2} d\left( \dfrac{y}{x} \right) + \dfrac{1}{4} \cos \left( \dfrac{2y}{x} \right) \left[ d\left( \dfrac{2y}{x} \right) \right] = 0$
$\displaystyle \int \dfrac{dx}{x} - \dfrac{1}{2} \int d\left( \dfrac{y}{x} \right) + \dfrac{1}{4} \int \cos \left( \dfrac{2y}{x} \right) \left[ d\left( \dfrac{2y}{x} \right) \right] = 0$
$\ln x - \dfrac{1}{2} \left( \dfrac{y}{x} \right) + \dfrac{1}{4} \sin \left( \dfrac{2y}{x} \right) = c$ answer