Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 month 1 week ago
- Sir what if we want to find…1 month 1 week ago
- Hello po! Question lang po…1 month 4 weeks ago
- 400000=120[14π(D2−10000)]
(…3 months ago - Use integration by parts for…4 months ago
- need answer4 months ago
- Yes you are absolutely right…4 months ago
- I think what is ask is the…4 months ago
- $\cos \theta = \dfrac{2}{…4 months ago
- Why did you use (1/SQ root 5…4 months ago
$x\,dx + \sin^2 (y/x) \, (y\
$x\,dx + \left[ \sin^2 \left( \dfrac{y}{x} \right) \right](y\,dx - x\,dy) = 0$
$\dfrac{x\,dx}{x^2} + \left[ \sin^2 \left( \dfrac{y}{x} \right) \right]\left( \dfrac{y\,dx - x\,dy}{x^2} \right) = 0$
$\dfrac{dx}{x} - \left[ \sin^2 \left( \dfrac{y}{x} \right) \right]\left( \dfrac{x\,dy - y\,dx}{x^2} \right) = 0$
$\dfrac{dx}{x} - \left[ \sin^2 \left( \dfrac{y}{x} \right) \right] \, d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2}\left[ 1 - \cos \left( \dfrac{2y}{x} \right) \right] \, d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2} d\left( \dfrac{y}{x} \right) + \dfrac{1}{2} \cos \left( \dfrac{2y}{x} \right) d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2} d\left( \dfrac{y}{x} \right) + \dfrac{1}{4} \cos \left( \dfrac{2y}{x} \right) \left[ d\left( \dfrac{2y}{x} \right) \right] = 0$
$\displaystyle \int \dfrac{dx}{x} - \dfrac{1}{2} \int d\left( \dfrac{y}{x} \right) + \dfrac{1}{4} \int \cos \left( \dfrac{2y}{x} \right) \left[ d\left( \dfrac{2y}{x} \right) \right] = 0$
$\ln x - \dfrac{1}{2} \left( \dfrac{y}{x} \right) + \dfrac{1}{4} \sin \left( \dfrac{2y}{x} \right) = c$ answer