Other Forms of Probability Distribution

Basic Algebra Review Part 22: Other Forms of Probability Distribution (Tagalog)

Geometric Distribution

$P(x) = q^{x - 1} \cdot p^1$

 

Hypergeometric Distribution

$P(x) = \dfrac{\displaystyle{\binom{k}{x} \, \binom{N - k}{n - x}}}{\displaystyle{\binom{N}{n}}}$

 

Negative Binomial Distribution

$\displaystyle P(x) = p^x q^{n - x} \cdot \binom{n - 1}{x - 1}$

 

Poisson Distribution

$P(x) = \dfrac{\mu^x \cdot e^{-\mu}}{x!}$

 

Add new comment

Deafult Input

  • Allowed HTML tags: <img> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <sub> <sup> <blockquote> <ins> <del> <div>
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
  • Mathematics inside the configured delimiters is rendered by MathJax. The default math delimiters are $$...$$ and \[...\] for displayed mathematics, and $...$ and \(...\) for in-line mathematics.

Plain text

  • No HTML tags allowed.
  • Lines and paragraphs break automatically.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.