Exponents, Radicals and Logarithms

Basic Algebra Review Part 1: Exponents and Logarithms (Tagalog)

Video discussion
Harhar sa video: @02:30 = correct term is commutative.
 

Exponents

  • $(a^m)^n = a^{mn}$
  • $a^m \cdot a^n = a^{m + n}$
  • $\dfrac{a^m}{a^n} = a^{m - n}$
  • $(ab)^m = a^m \cdot b^m$

 

Radicals

  • $a^{1/n} = \sqrt[n]{a}$
  • $a^{m/n} = \sqrt[n]{a^m}$

 

Logarithms

  • For $y = b^x$, then $x = \log_b y$
  • $\log_b x^m = m \log_b x$
  • $\log_b (xy) = \log_b x + \log_b y$
  • $\log_b \left( \dfrac{x}{y} \right) = \log_b x - \log_b y$
  • $\log_b b = 1$
  • $\log_b 1 = 0$
  • $\log_e x = \ln x$
  • $\log_{10} x = \log x$